Aller au menu Aller au contenu
LGP2, a center of innovative research

Paper, print media and biomaterials

LGP2, a center of innovative research
LGP2, a center of innovative research
< >

> Research

LGP2 - Functional printing: from the study of printed layers to the prototyping of flexible devices

Published on February 26, 2015
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
December 11, 2014

Daniele Sette defended his University of Grenoble doctoral thesis entitled "Functional printing: from the study of printed layers to the prototyping of flexible devices".

Logo CEA 2012 © CEAThis thesis was prepared under the supervision of Anne Blayo, Lecturer-Researcher, Laboratory LGP2, and of Christophe Poulain, CEA.
In the last decade, functional printing has gained a large interest for the manufacturing of electronic components. It stands aside to silicon technologies and specifically targets markets of large area devices (screens, photovoltaics) and flexible electronics (RFID antennas, sensors, smart textiles).

In this work, inkjet printed silver layers are characterized depending on the printing conditions and the required post-printing annealing. The evolution of their microstructure, electrical and mechanical properties is investigated as a function of the annealing temperature. The correlation of the measurements with theoretical models supports the experimental methods that were developed. The knowledge of the printed silver layers assets and the optimization of the printing process lead to the design, fabrication and characterization of flexible electronics devices: a 17 GHz band-pass filter printed on plastic, a flexible vacuum micro-sensor working on the Pirani principle, and a 250 µm thick membrane switch for keyboards. Finally, all printed RF capacitors were realized by stacking Barium Strontium Titanate dielectric and silver printed layers.

These prototypes exhibit performances near the state-of-the-art and suggest new opportunities for printing technologies. This thesis offers a thorough study of inkjet printed silver layers and assess their potential for the manufacturing of flexible devices.

Press release
Ph.D. thesis of LGP2 (2014)

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Date of update April 1, 2015

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes