Aller au menu Aller au contenu
LGP2, a center of innovative research

Paper, print media and biomaterials

LGP2, a center of innovative research
LGP2, a center of innovative research
< >

> Research

LGP2 - Membrane separation processes for continuous production of nanocrystals of polysaccharides: experimental approach and modeling

Published on January 13, 2015
A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo
December 12, 2014

Ahlem Romdhane defended her University of Grenoble doctoral thesis entitled "Membrane separation processes for continuous production of nanocrystals of polysaccharides: experimental approach and modeling".

This thesis was prepared at the LGP2 Laboratory under the supervision of Marc Aurousseau, Professor, and of Agnès Guillet, Associate Professor, at Grenoble INP-Pagora.

The current work investigates the use of cross flow microfiltration using ceramic membrane to fractionate the heterogeneous suspension obtained after starch hydrolysis in order to isolate starch nanocrystals. The final aim is to evaluate the possibility of coupling the filtration step to the hydrolysis step in a single production loop in order to enhance the starch nanocrystal production yield. The characterization of the suspensions (particle size and charge) obtained with the classic production process indicates that it was a mixture of starch nanocrystal aggregates and starch residues, individualized starch nanocrystals represent only 5 % of the initial starch.

The fractionation study was done using two pilot plans, in a dead end configuration at laboratory scale (plate membrane) and in a cross flow configuration at semi-industrial scale (tubular membrane). Design of experiments methodology was used to optimize the fractionation efficiency when filtering a neutral suspension considering the effect of filtration parameter on the transmission yield and membrane fouling.

In the optimized condition, it was possible to recover 25 % of starch nanocrystals while keeping the permeate flux at its highest value. Mean diameter of the recovered particle was less than 300 nm. At this condition, it was also possible to recover the starch nanocrystals directly from the acidic mixture obtained at the end of the hydrolysis step. The analysis of fouling mechanism using dead end filtration experiments highlights that membrane fouling occurs because a cake build up at the membrane surface. This study investigates also the use of ceramic ultrafiltration membrane in a diafiltration process in order to purify the acidic suspension from soluble molecules without modifying particle size distribution which is a promising technique for a large scale production.

Press release
Ph.D. thesis of LGP2 (2014)

A+Augmenter la taille du texteA-Réduire la taille du texteImprimer le documentEnvoyer cette page par mail Partagez cet article Facebook Twitter Linked In Google+ Viadeo

Date of update January 15, 2015

Grenoble INP Institut d'ingénierie Univ. Grenoble Alpes