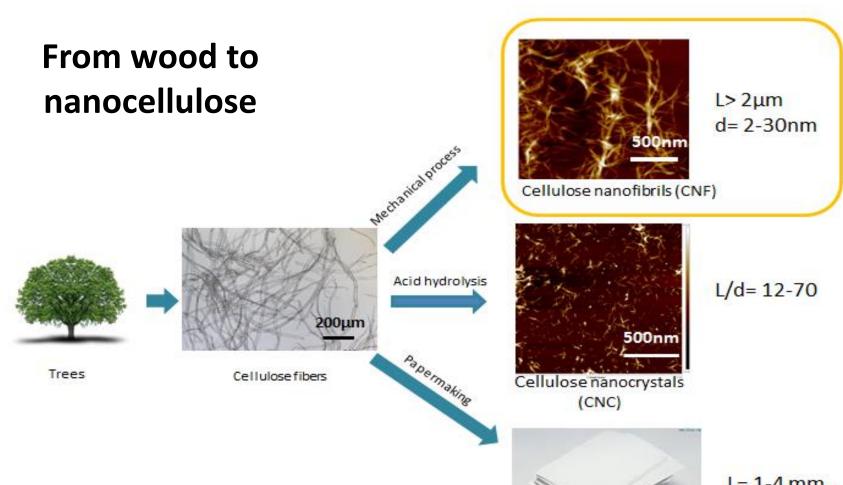


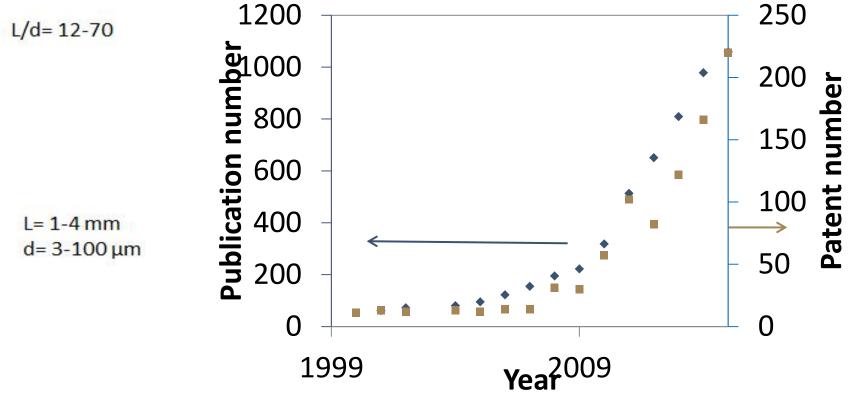
New chemical pretreatment

TSE – common industrial method



CERISE : CEllulose pRetreatment for In Situ fibrillation by twin screw Extrusion

Fleur ROL, Julien BRAS, Valérie MEYER, Michel PETIT-CONIL, Nadia EL KISSI, Naceur BELGACEM


Laboratory of Pulp and Paper Science and Graphic Arts – LGP2 UMR 5518 / CNRS – Grenoble INP - Agefpi

Context

Nanofibrillated cellulose CNF

- Bio-based material
- Renewable & Biodegradable & Biocompatible
- Good mechanical properties
- Barrier properties
- High specific area
- Transparent

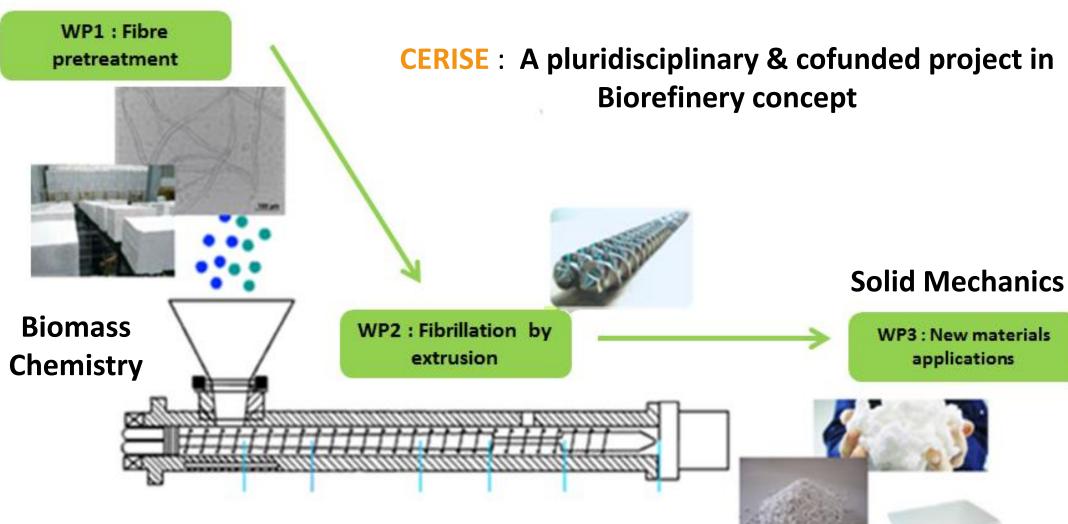
70

-TSE

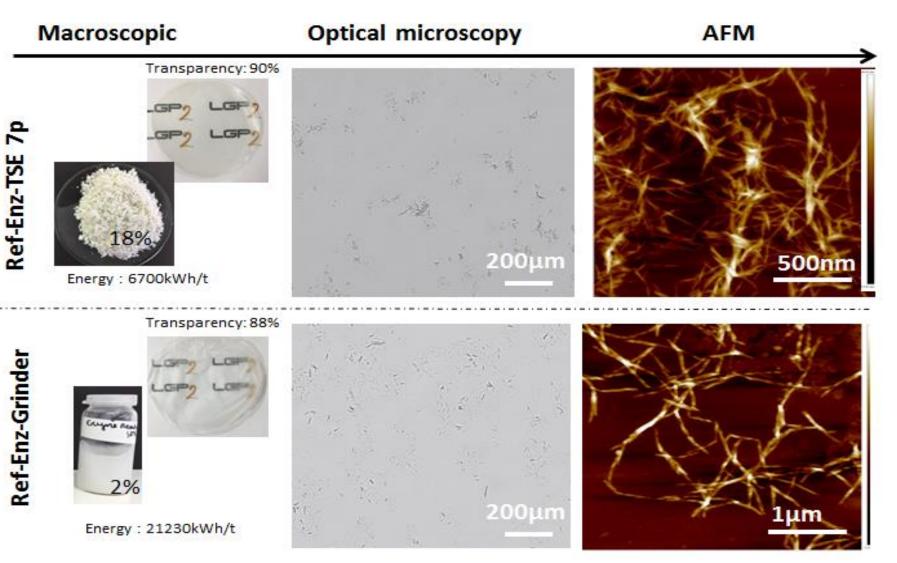
Ref-Enz

			Highly adaptable procedure Fast procedure High solid content Ovel route for CNF production: Twin Screw Extruder	
1982 Discovery	2008	2011 CNF Industria	2014 alization	

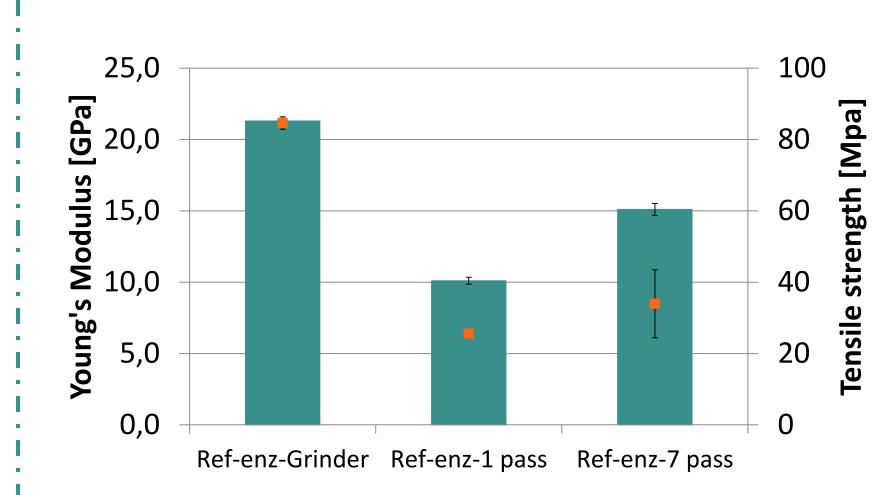
oject


Inspired from Emily Cranston, McMaster University

\succ Main issues for the industries: ✓ High Costs & Energy consumption


- ✓ Production at 2 wt% suspension form
- ✓ Storage ,Transport & Application issues

CERISE Project


- Developing new « green » pretreatments to facilitate the liberation of cellulose microfibrils
- Using twin-screw extrusion for a microfibrillation process at high solid **content** in an **energy effective** and continuous system
- Preparing new materials made of 100% of CNF or with high concentration formulation

Nanofiber morphology

Mechanical properties

- Mechanical properties are very closed
 - Young's modulus are in accordance with the literature
- Twin screw extruder leads to nanofiber with the same morphological properties
- After 7 passes through the TSE, cellulose nanofibers are transparent

6700

11000

Energy Consumption [kWh/t]

15000

10000

Nanofiber properties

Energy

Enz-TSE 7 p

Enz-TSE 1p

Enz-

Homogenizer

Enz-Grinder

1050

Materials & methods

Materials

- Eucalyptus bleached kraft pulp Fibria
- Enzymatic pretreatment of cellulose fiber

FiberCare R, 50°C, 60L/t, 2h, pH 5

Methods

Comparison of two processes

Mixing element at 6 Mixing element at i 10 Mixing element at 30 12 Mixing element at 90° 4 Mixing element at 60 4 Mixing element reverse at 60% • Extrusion : 400rpm, 10°C, from 1 to 7 passes (1) Mixing element reverse at 60%

• Supermasscolloider grinder equipped with recirculation, 2h30

Characterizations

Chave at a visation of	
Characterizations	Methods
AFM	10 ⁻² %, mica disk, Scan assist mode
Optical microscopy	0,5%, Carl Zeiss Axio Imager M1 optical microscope
Mechanical properties	Instron, 5kN, 50mm/min, 15mm*50mm
Transparency	Haze meter, NF: T 54-111,1971
DP	ISO 5351:2010
Energy	Torque*velocity/flow

	Reference	Refined	Chemical	Mechanical	Number of	Solid	Young's modulus	Tensile Strength	DP	Transparency
		[Y/N]	pretreatment	pretreatment	pass	content [%]	[GPa]	[MPa]		[%]
	Commercial	Y	Enzyme	Homogenizer	5	2	11.9 +/-3.9	67.9 +/-3.5	194 +/- 2	90.6 +/-0.6
	Ref-Enz-TSE1p	Y	Enzyme	Extruder	1	18.2	10.1 +/-0.2	25.6 +/-1.1	323+/- 2	89.4 +/-0.3
	Ref-Enz-TSE 7p	Y	Enzyme	Extruder	7	18.7	15.1 +/-0.4	33.9 +/-9.5	219+/- 1	89.6 +/-0.1
	Ref-Enz-Grinder	Y	Enzyme	Grinder	2h30	2	21.3 +/-0.1	84.6 +/-1.8	215 +/- 1	88.0 +/-0.7

First Results

Similar properties whatever the process But higher solid content

8%	Mechanical method	Total energy consumption for the production [kWh/t]	Reference
	Homogeneizer	70 000	(Eriksen 2008)
	Homogeneizer Gaulin (20	22 000	(Spence et al.
\mathbf{N}	passes, 55MPa)		2011)
	Homogeneizer	12 000 -25 000	(Klemm et al. 2011)
	Microfluidizer (20 pass,	3200	(Spence et al.
0	69MPa)		2011)
	Grinder (1 to 10 hours,	5000-30 000 kWh/t	(Wang et al. 2012)
25000	1500 rpm)		

• Twin screw extruder allows to reduce considerably the energy consumed compare to other processes

5000

Conclusion & Perspectives

Nanofibrillation of pulp with same quality as other mechanical treatments but...

- 5 to 10 times less water ۲
- Strong energy savings (40 to 68%) \bullet
- Production time is reduced by 2 to 4
- **Production costs** are reduced
- Transport cost are reduced •

(1) Ho, T. T. T.; Abe, K.; Zimmermann, T.; Yano, H. Nanofibrillation of pulp fibers by twin-screw extrusion. *Cellulose* 2014, 22 (1), 421–433

Try different pretreatments : TEMPO oxidation, cationic,...

- Optimise extrusion to obtain MFC after 1 pass
- Understand what happens during extrusion
- Develop in situ extrusion

20000

Try combination of different processes

Acknowledgments

This research was supported by Institut Carnot Polynat (grant agreements n° ANR-11-CARN-030-01), le Centre Technique du Papier (Grenoble, France) and LabEx Tec 21 (grant agreement n° ANR-11-LABX-0030). LGP2, 461 rue de la papeterie, CS10065, 38402 Saint-Martin-d'Hères http://pagora.grenoble-inp.fr/recherche/

> Julien.bras@grenoble-inp.fr Fleur.rol@lgp2.grenoble-inp.fr