Context

Coating industry – Textile field
- Textile personalization demands used to grow up the last decade
 - Customers always want new design in every area such as sport, lifestyle or luxury
 - Clothes’ manufacturers are looking for new solutions

Printable coating offers an unlimited way of personalization
- Use of a lot of dangerous products for both human health and environment
- Restrictions are increasingly strict in this area

Funded by:

Maxime FAUREAU-TILLIER
LGP2 (A. Blayo; A. Denneulin)
Chomarat (J. Maupetit)
Thèse confidentielle

Objectives

Formulation
- Change of the entire formulation:
 - Comply with new regulations on working conditions
 - Reduce VOC emissions
 - Reduce environmental impact
 - Keep product labels
 - Incorporate bio-sourced raw materials

Process
- The process will be adapted to formulation
- Productivity with new formulation has to be equivalent to solvent-based one at least
- The different product layers have to be assembled with strong adhesion

Properties
- The coating has to be printable by inkjet
- At the end, the new product has to respect the actual specifications at least

Methods

Surface characterization
- Over films:
 - Contact angle measurements
 - Surface roughness analysis

- Over both raw materials and solvent-based coatings formulation:
 - Rheology of both raw materials
 - Surface tension: Du Noüy and Whilelmy methods

MODIFICATION OF THE PROPERTIES OF POLYMER SURFACES BY AN ENVIRONMENTALLY FRIENDLY PRINTABLE COATING

MODIFICATION DES PROPRIÉTÉS DE SURFACES POLYMÈRES PAR UN VERNIS IMPRIMABLE RESPECTUEUX DE L’ENVIRONNEMENT