Eva PASQUIER
LGP2 (J. Bras)
Aalto Univ. (O. Rojas)

Preparation of hybrid advanced materials made of biobased nanofibers (cellulose and chitin) and lignin particles for packaging application
Preparation de matériaux hybrides à partir de nanofibres biosourcées (cellulose et chitine) et de particules de lignine pour des applications en emballage

Context

Bio-based & Biodegradable food packaging
Today's need: replace petroleum-based materials
Advantages of biobased polymers:
+ They are abundant and available as waste or by-product
+ No need for chemical modifications
+ Capacity to form active packaging

Methods

Raw materials
2 different types of fibers
- Cellulose nanofibers (CNF)
- Chitin nanofibers (ChNF)

In-situ preparation of LP
Study of the interactions depending on the nanofiber surface chemistry.

Formation of functional multilayers
Optimization of each layers and of the layer's association.

Characterizations:
- Nanofibers/particles interactions
- Dispersion of the particles in the films
- Film structure and layers interactions

Results

Characterization of the suspensions
For in-situ LP preparation, particles sizes and distribution varies depending on the lignin amount and the fibers type.

Functional film analysis
- Barrier properties (oxygen and water vapor)
- Mechanical properties
- Contact angles
- Transparency
- Anti-oxidant activity

Funded by
Bourse présidence
In collaboration with Aalto University

Bio-based and chitin nanofibers
- Good mechanical properties
- Particulate suspension stabilizer
- Good O₂ barrier properties

Lignin particles (LP)
- Anti-oxidant properties
- Tunable particles size
- High specific surface area

Lignin particles and cellulose nanofibers
Sediment
Supernatant
Lignin particles and chitin nanofibers
Sediment
Supernatant

The higher lignin content, the better AO activity but the lower transparency