Multi-material 3D printing of a structural bio-based and functional object from the lignocellulosic biomass

Impression 3D multi-matériaux d’un objet fonctionnel à base de la biomasse ligno-cellulosique

Context

Three-dimensional (3D) printing is a revolutionary manufacturing technology:
- low material loss;
- complexity of the object & its cost;
- easy cost-effective product customization;
- one machine → infinity of objects.

Cellulose, the most abundant bio-based material, is used for 3D printing. However, many challenges remain:
- Shape fidelity.
- Shrinkage < 5%.
- Porosity.

Many researches has been conducted to 3D print composites yet:
- the thermoplastic used have poor thermal and mechanical performances;
- photo-cured resins are costly;
- the material is petro-sourced.

Bio-based thermosetting resin with cellulose → Bio-based and cost-effective material with good performances.

Materials characterization

- Oligomer analysis with RMN and FTIR.
- Size distribution and morphology of the cellulose.

Ink formulation

- Thermosetting bio-based resin
- Cellulose powder or Nanofibers
- Solvent and catalyst

3D-Printing by extrusion

Many researches has been conducted to 3D print composites yet:
- the thermoplastic used have poor thermal and mechanical performances;
- photo-cured resins are costly.
- the material is petro-sourced.

Bio-based thermosetting resin with cellulose → Bio-based and cost-effective material with good performances.

Funded by

La Région Auvergne-Rhône-Alpes

Methods

Material and paste characterization

- Rheology
- DMA
- Printability assessments
- Thermal and mechanical performances
- Morphology and printing quality

Shape fidelity and shrinkage

- Shape fidelity.
- Shrinkage < 5%.
- Porosity.

- Printable and extrudable.
- Porosity and printing limitations.

Thermal performances

- Good thermal properties.
- Possibility of carbonisation.